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Condltions are obtained for the asymptotic stabillity of the periodic solu=~
tlons of non-self~-contalned quasilinear systems with two degrees of freedom
in the case of princlpal resonance with one resonant frequency for simple
and double roots of the equation for the fundamentsl amplitudes.

l. We consider the oscilllatory system

g k= (@) 0 FO (@, 2, 2, g, v, B
y" + mzy = f(z) (t) + HF(z) (t’ z, x" Y, y'r f"’) (1'1’

Here f() and f(® are continuous functions of period 2m , satisfying the
conditions for the exlstence of perlodic solutions of the generating system
(b = 0) with the same period; F(1) and F(z are analytic functions with
respect to the varlables x, x, y, ¥, u , and are continuous periodic
functlions of ¢ with period 2y . The quantity 4 1s a small parameter,

% 1is an integer, w 1s a noninteger. The generating solution of perilod
2n depends on two arbitrary constants 4, and B,
xg () = Agcos kt + Bok~tsin kt + fi(1) (1), Yo (1) = fo B (t) (1.2)

Here [WNo,f(%¢ 15 a particular solution of period 2n of the system(1.1)
when pu =0 .,

The initlal conditions for system (1.1) are taken in the form [1)

2(0) =10 O+ Ao +B1, (@) =1 (0)+h
2 (0) = fo'V" (0) + Bo+ B2y 4 (0) = fo'¥"(0) + (1.3)

Here B,, Bz are functions of y vanishing for u = O ; ¥, and ¥, are
analytic functions of 4o+ 8, , BHo+ B, and u also vanishing for u = O .,

These functions may be represented by the series

a 0¥, ¥y, .
b= N [Tt G Bk G e (=1) (t.4)
==l

The particular solution of system (1.1) with initial conditions {1.3),
turned into the generating solution {1.2) when u = O , can be written as[1]
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127}4 G.V. Plotnikuva

2 (t) = fo'V () + (Ao -+ B1) cos kt -+ B":”D” sin kt - (1.5)

o ac, M (t aC, M (¢t
+2 [C”m )+ aAo( bt aBQ( 8, + } pn

n==}

S oC, (1 aC,P (1
y(t) — 10(2) (t) + 2 ]'Cn@) (t) + ‘““aAo( ) Bl + ___aB_o_(__)Bz__},".] p‘n

n=1 -

Let us note that the derivatlves wilth respect to 4o and R, are complex
derivatives taken with due regard to the dependencies of ( (1 (t) and C, ()
on §; and §5 which 1n turn depend on 4, and B, . "

The functions C,()(f) and C,(3() are determined by Formulas [1]
. t
CaV ()= S F W (tysink (t — 1) dv (1.6)
o

¥, 1
Ca® (1) = ¥incos 0t + —> sinwt + o \ Fpl® (1) sin o (¢ — ) dr

D

Here

; 1 d™ i Fd (¢
Fn(t) (vy= o [ n-1( )}
(n—1) dp Br=By=thymobymp=t
are the complete partial derivatives of the functions F(i) with respect to u.

For example,
PO @ =FD RO )= FD D0+ F 6V )+
+ (F, /0 C1® (8) 4 (F D)o O (1) + (7 ) ete. (.7

Here and what follows the subscript © signifiles that in the functions
within the parentheses the x, x*, y, v, should be replaced by x5, Xo°,
o Yoo» O from {1.2); F ) = 8FhH/dx etc. In order that the solutlon
¥1.5¥°be periodic with perlod 2n , 1t 18 necessary and sufficient that the
following four Poincaré conditions for periodicity (2] be satisfied:
z(2n)—z(0)=0, y(2n)—y(0)=0, 2z @2n)—2(0)=0, y (2n)—y (0)=0
From these periodicity conditions we can find:
1) the amplitudes Ao and 5, as solutions of the amplitude equations
M (@2n) =0, Y 2r) =0 (1.8)

2} the quantities 8, and @, in the form of series in u or pi when
Equations (1.8} have double roots,

oo oC
Bi= > AL ™,  Ba= X BI™M  (r=1,2) (1.9)
ne==] ﬂ:—'_l
H AN B
ere the first nonzero coefficients n/g and n/g are determined from

quadratic equations, while the rest are determined from linear systems of
equations with nonzero determinants in the unlkmowns [1 and 3].

3) the coefficiénts v¥,, and ¥,, from Equations [1]

g
b 4 1
¥ (cOs 270 — 1) 4 % sin 20 + — S Fu? (1)sino (28 — 1) dr=0
o on
— @ ¥y, sin 210 + ¥an (cos 2w — 1) S F, ¥ (t)cos0 (2n —T1)dr =0 (1.10)

U]
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Thus, to each simple root of the equations for the fundamental amplitudes
there corresonds one perilodic solution of (1.1) in the form of the series
{(1.5) in integer powers of u {all the coefficients with fractional indices
in (1.9) equal to zero); to each double root there cgrrespondv two perdiodic
solutions of (1.1) in the form of series in u or u

[20] [es]
2N @)= ) 2 (1) u, y (1) = D) yih () u™ (1.41)

A= o=
where B:f
o7) (1) = Ay coskt -+ <7 sinkt, ;) (1) =0

B "
#\7 (1) = Ay cos kt + 7} sinkt+ GV (1), w7 () =0 ()

iy B 3¢ (1) (5
wg/’;) (t) e A\,/g cos kt + f"&in kt - 35, Ax/,&tw B’/l

@) e
() gy = 2L 8¢
vy, )= —57,~ Ay +"3g, By,

‘ By ety o acM
2{ (t) = Az cos kt -+ f sin kt 4 €4 () + _;AEQtiAx - “‘la‘g‘o‘{‘)' 1

8C, (¢ ac,® 1
™ (8) = C® (1) + ;AO()AH_ 230()31 ote.

Here and in what follows the superseript (r) on ¥ 4nmand Bos will be
omitted. Let us investigate the stabllity of these perilodlc solutions.

2. Let us write down the variational equations for system {1.1)
u(l)--+kgu(l) . p(px(l)u(l) + Fg)u(l)' + Fu(l)uﬂ} + F%];)u(ﬂ)a)r

u® 4 @@ = { Fx{ﬁ)ufl) + Ff,f»)u(i}' + pﬁ(ﬂ)u(ﬁ) + F?.)um'),. 2.1)

The subscript 7 signifies that in the derivatives of the functions FI
and F¢@ , in place of the x, x*, ¥y, y° we must substitute thc solution of
(1.1) from Formulas (1.11).

For an approximate computation of the characteristic exponents we shall
use the method presented in [2] {pp.203~213).

Let us first note the coefficlents F,(, Fo M, ... {i=1, 2}' in Equations
{2.1) are analytic functions of u, x, x*, ¥, ¥, and the latter,in turn,
as solutions of system (1.1), are analytic functions ,of u or ui . Conse~
quently, Fp(,... are analytic functions of u or u? (see [3 and %]). For
example, with due regard to {1.11)

F 90,7, 9,y w)=F+ FQay + Fllay, + Fiy, + FQui on" +
+ (FQ o+ Fay + FOyi+ FOyr . Jop + .. (2.2)

Similar expansions hold also for the remaining coefficients.

let us find the characteristic exponents of system (2.1) corresponding
to the resonant roots itk of the fundamental equation. When u = O the
values of the characteristic exponents are go¢= + L% . Since in the resonant
case the guantities + ¢k may be rejected from the characteristic exponents,
we seek the latter in the form

jo s}
o = Z“ o g™ 2.3
Pz
System (2.1) has the solution

u® (1) = et o (1) 2.4)
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where uv() and v are periodic functions of period 2n . Consequantly, if

in Equations (2.1) we were to substitute the variables (2.4), then the trans-
formed system should admit periodic solution. This condition serves for the
determination of the quantity Uy

We seek the uv(!) and u(®*) 1in the form

oc
v (@) = D)ol (™2 (2.5)

n=—=0

Let us substitute §2.2), (2.3) and (2.5) into Equations (2.1) after maging
the substitution (2.4) into them. By equating terms of like powers of u¥%,
for the determination of the functions vé“ we obtaln the sequentlally-
solvable inhomogeneous linear systems of éequations
(1) ) _qp 2)e- 2) _ 2 X
vn/)2 +k’vn/2)_®n/2, vs‘/)z +(ozvn(/2) “(Dn(/z) (2.6)
where

0N =0, O =0, O =— 2000 4 (F D0+ FQo{V + F B0e® - FRor)
Off) = — 20,9, — 2010 + (F Do) - FOol) 4 F,P0f) 4+ FRoi) + (FEal]) +
+ FQ + FOUD + FOy T pol) + (FEa) + FRf) + PO +
+ FOY), 0oV o+ (F D)) + F Q) + PRl 4+ F OG0 06 -
+ (F D) 4+ F D 4 FE0) + F Q1) 008w e (2.7)
In what follows we shall also need the values of d)ﬁ’ up to n = 5, but

because of thelr awkwardness we shall not compute them here.
The solutions of (2.6) will be periodic if and only if the conditions

2n an
S ®4Y), (1) sin ke dt = 0, S ®) (1) cos kt dt = 0 (2.8)
are satisfiled. 0 0

The periodic solutions of perlod 2n of system (2.6) are

1 .
vrﬁ}; (t) = Mn/2cos kt 4 T Nn/zsm kt wn(/lz) ()

vn(/zz) @)= wn(/g) ®) (2.9)
Here M, ., N,,iz are arbitrary constants, wﬁ}}z ®, wi.z}g () 1s a particu-
lar periodic solution of (2.6) of period 2n . For n = 0.1 we have, for
example, wo= wi,(H=0.
Let us write down the conditions (2.8) for n = 2 , taking (2.7) and (2.9)
into consideration when n = O , Here we must make use of the expressions
for the derivatives of  C¥ (#), C!V (1) with respect to Ao, and PR, when

t = 21 , as computed on the' basislof (1.6).

Finally, the stated conditions take the form

) ac,V ac, "\ 9C,1"
(207 ) 4 =0, T+ Mo (T — 2] =0 10)

Here and subsequently when the argument ¢ 1s omitted from the functions
¢ (1), C () and their derivatives with respect to 4o and B, , 1t is to
be! underdtood that t = 2n .

The system of equations (2.10) define the unknown constants #, and /¥o.
In order that this system have a nontrivial solution 1t 1s necessary and
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sufficient that the determinant in the unkown vanish. By expanding this
determinant we obtain a quadratic equation with respect to a,

G, ac, . ._ 0%, 6
bt — 250 (m + 6—Bo> oy + A° =0, 8= Ry 2.11)

which is a speclal case of Equation (13.6) in [2] (p.210).

For sufficiently small u the sign of the real part of q 1is determined
by the sign of the real part of the coefficlent of the highest term in expan-
sion (2.3). Therefore, in order that the solution of (1.1) be asymptotically
stable 1t 1s sufficient that the real parts of q«, be less than zero. From
(2.11) we obtain the conditions for the real parts of a,; to be negative in
the form

aC,\Y 3, ,
) i+ g <0 B AT>0 (2.12)

Conditions (2.12) have already been obtained in [2]). They are similar,
respectively, to conditions (14¥ and (9) of the paper [5] for a system with
one degree of freedom.

Iet the equations for the fundamental amplltudes have a double root. The
second condition in (2.12) 1s no longer satisfied since A°= O . From (2.11)
it follows that one of the values of a;= 0 . Let us find the next highest
coefficient Q. a of the characteristic exponent, whose real part 1s different
f‘roEn zero. We consider the most interesting cases similar to that considered
in [5].

Here we shall make use of certain quantities obtained from the quantitiles
introduced in {3] by replacing in the latter the C, () of [3] by the C,Q)(t)
of [1]. We shall use the same notations for them except that we shall use
a superscript ©

For example,

ac,V . ac,\r ac,V ac,\r
o __ (1)- _ (1) o __ 1 (1. _ 1 (1)
Al aBo Cz aBo CB ’ AZ - aAo Cz aAo Cz (2.13)

1. Let A,°# O . There exlst two periodic solutions of (1.1), which can
be expanded into series in powere of u% . When gq,= 0, from the Equations
(2.10) we have, for example,

ac, (1> ac,"V

o=, +  No=—"4 (2-49)
For n = 3, after cumbersome calculations the conditions (2.8) become

. (1)
301(1) acl(l) ) acl(l) 6C, (2 {
My Tag + N amy H W =00 My T RNy T W =0 (249)

where

ac, V) a2,V aC, Y g0,V
> (2.16)

(1) _ _
Wi _A'/z< 3B, 9A¢ — 94, 34,0B,

601”)' 3201“) 601(1)- azc‘(l)\ ) na_cl(l)-
+B'/2( 3By 9AqdBy, 04, 0B ) T %™ 8B,

) 601(1)' axc, V- 301(1% 3201(1)‘
W =a, _Z )
s s\ 0By 04,2 649 0Ay0By
601“)' a0,V ac,("" a2C,(V 601“)'
v _ ") b e, 2L
"2\ 0By 0Ay03Bo 04, 0By /2 8Ayp
Let us recall that 4., D,, (the coefficients of ;™2 in expansions

(1.9)) have two values [1 and 3] differing in sign and corresponding to two
periodic solutions (r = 1, 2).

Since the detrminant in the unknowns My, Ny, 1in system (2.15) equals
zero, then for this system to be compatible it is necessary and sufficient
that one of the Equations (2.15) be a consequence of the other. After some
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manipulations, from this condition we get the equation for determining a,,
2

08 | p 08 (661“) | 80

L =dy 545 7V 5ngp =

34, T 3B, )%

Since @, should be less than zero, and the first condition in (2,12) 1s
assumed as éatist‘led, then for asymptotic stability it 1s sufficient to
satlsfy the condition L,,° >0, similarly,to the condition (10) of [5]. 1In
the same way as there, it"can be proved that L,°=0 1in the case being

consldered and that the inequality Ls,° >0 4is”satisfled for one of the two
periodic solutions.

2. Let 4;°= 0, and let the roots of Equation Ng°e® -+ Ny + Ny = 0,
:gi:h is simllar to Equation (2.14) of [3], be simple, i.e. a,# @, . Recall
a

. 1 (601‘”601‘”')"16(01'“’, A°%)
Neo®= 5\ 38, 35, 3 (Ao, Bo)

Nnaz(a_cg‘i ?_2_1“.11)“[ 2.<1>(§2££"_' 36,0
aBy 8B, B2 04,
a2,V aCc, V" @cWac,Y e,V acV
34,0B, 9B, ~ 0By 04,  0A,0B, 6Bo>
ac,' 1 rac, 1 a0,V ac,V ac,' Y acs) ac,'Y  ac, ) ac, (W
3B, (GA(, 9B, * 9B, A4, — 0B, 04, — 9, 9B, )]

aC, N ~-2 130,V -1 [9C, V) 11 prc, (V) ,
N20°=( Cy ) (Cl ) 1 I‘H 12 1 —

dBo 8By 0By | 2 03By

. {1) (1)
_ GCau) 601(1) C (1) (acl(l) >2 3(1), _acl [l __._azcl_._ 03(1)2 —
8B, 9B, * B, 8B, | 2. 8Bg®
ac e,V (301(1)' : m}}
- aBu 680 Cg + aBO )Gs
In this case there exist two periodic solutions of (1.1), which can be
expanded into series in powers of u . The coefflcient @y, = 0, since

Ly ° = 0.
/s

When &, =0, Ay =By =0 for My, and -Ny from (2.15) we get the same
values as for M, and N, , respectively, in (2.14). The quantity o, is
found from the existence conditions for periodic solutions of system ?2.6)
for n = 4 , which after cumbersome computations are written as

8C,'1 ac,1 8 (G, ¢,

22 et 2 1y ¢ 2372 a4 L
M, 94, + N a8, + Wit 3 (4o, Bo) = 0

601(1)' 301(1)- @ F.] (Cgm', Cl(1)~)
Ml—b—‘;l-o—-i-Nl—aE]—+W1 +W=O (2.47)

where Wi'" and Wi are obtained from Wﬁ,l,), and Wﬁlz.) in (2.16) by replacing
in the latter the quantlitles Ay, B,/,, @), by A4y, By, a, s respectively.

Here we have made use of the expression for the periodic solution of (2.6)
when n = 2 , which has the form

(1) {1
010 (£) = My cos kt+1k‘sm kt+MoaC§, Ao(t)-{— NoachD(t) . n®P@=... (218
and M, and ¥, take the values (2.14).
As in the previous case the compatibility conditions for system (2.17)
give the equation for the determinatlon of q
aA° AA°  [9A°  OAP° ( ac, M 801‘1)‘)
L= g+ 555, (a2, — 53%) =2 (o + 75 ) @
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By virtue of the same reasons as in [5], I1,°# 0 since Expression for
L,° is similar to L, in [5].

On the basis of (2:12) (a), the condition for g, to be negative, has a
form L,°> O , which is similar to condition (13} in [5].

. Finally, let a,= a, , while the quantity #°¥ O (similar toc & in
[5]?. We can construct two,periodic solutions of (1.1), which can be expanded
into series in powers of u® . 1In this case the quantity 1o « 0 and,
therefore, aq.= 0 .

The coefficient O, 1is found from the perilodicity conditions (2.8) when
n = 5 in the manner similar to the finding of q, from (2.8) when n = &
Here we use the value of v}ll) ), as found from (2.6) when n = 3 , It turns
out that *

N, 3C,V (1 ac,\V

Y2 . 1 () Cl t)

v, /ﬁ” () = My, cos kt + —=sin kt + My, —5—+ Ny, .__aBo(

where My, Ny, ape arbitr constants; My, Ny, have the same values as M,,

Ny- respectively, in (2.14).

The stated perilodicity conditions vield two equations for the determina=-
tion of Msy,, Ny, Taking into account that I,°= 0 , from the compatibility
conditions for these equations we obtain the equation for determining asy,

. A aA° acw ac:‘”')
Ly’ = Ay, 54, + By, 38, ""2"( 34, T aBy ) %

In a manner similar to that in [5] we can show that IL%°=0, and, con-
sequently, %;,%Og The condition for Oy, to be negative ylelds the condi-
tion for asymptotic stability, Ls,° >0, which is always satisfied for one
of the two periodic solutions.

Thus, for the resonance root we obtain results similar to the results for
systems wlth one degree of freedom. The conditions for asymptotic stability,
corresponding to the resonance root of the fundamental equation, coincide
with the conditions for asymptotic stability of the periodic solutions of a
hnon=-self-contained system with one degree of freedom [5]. All that need to
be done is to substitute the ¢,(¢) in the latter with the C,(t) from [1].

Finally, let us write the stability conditions corresponding to the non-
resonance root of the fundamental equation

an

S (F,®)odt <0 (2.49)
) .

This condition 1is obtained by the same method, however, the characteristic
exponent is determined by Formula [ 2]

o0
a=tio-+ 2 Lnya o
n=9g
3. Let us consider some examples. (1) , We take the system of equations
from [1] & o =—4cos 2+ [Ysy — (1 —2%) 2]
Y+ Yay=5c082t +pu[$5(1 —22) 2" —VYs5y'] {3.4)
The generating solutlon of {3.1) has the form
2 (t) = Agcos ¢ + Bysint — 4/5 cos 2, y, (&) = —*4,cos 2
The equations for the fundamental amplitudes
Ay [3 + Y4 + BgY)] = 0, By [3 + Y, (A + B =0

have the solutlon 4o= Bo= O . The periodic solution of (3.1) constructed
in [1] is stable since the first stabllity condition {2.12) 18 not satisfied,

2). We consider a system of equations of the form
2" 4z =phesint+ o (1 — 222"+ By’
Y +Yay=p[—Yakosinl 47 (1 —2?) " + 8y] 3.2)
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The generating solution depends on two arbltrary constants,
xg () = Agcos ¢ + Bysin ¢, Yo {t) = 0
The equations for the fundamental amplitudes
ko + (6a + 9704y [1 — Yy (A2 + B?)] + Youdy (9B + 128) = 0
(6a + 9B, [1 — Y, (A2 + B + Y4By (9B + 128) == 0
have the solutions Jow= O , 4o= A , where 4 1s the root of the cubic equa~

tion
(6a + 9p)A® + 4 (6o + 9y + 8B+ 12004+ 3k = O
Here

A° = —3, (Bo + 9P)A® + (Ba + 9p)d — (Ba -+ 9y + 9B -+ 12.8)

Let us assume that the parameters A, ¢, B, v.,8 are such that a°# 0 .
Then we can construct a periodic solution of {3.2% in the form of series in
integer powers of u . The stability conditions (2.12) for this solution

ive that Ay, @,B,7,6 should be such that 6q + 9y > 0 and a%> O . Condition
2,19) gives &< O .

3). We consider a more interesting example
"+ v = p(vyeost + Agsint + ex + p2® + dy + g%
¥ b Yy s vy cost - Ay sint 4 ez ¥ar® + doy + gay® + Oy) (8.3}

This equation reminds us of the Duffing equation [2] in a quasi~linear
formulation. The generating solution has the form

2g () = Agcost + Bysing, Yo {t) = 0
The equations for the fundamental amplitudes are
CfY (2r) = Ay + 6By + ¥ B (Ag? + BgY)] = 0
CIU')‘ (23'5) =& I‘\’l + GlAﬁ + 9[’4}’1.;40 (Aoz + 802)] = )
The condition 4%« O for the multiplicity of the root leads to the fol-
lowing relation between the coefflclents of the equations:
8iri(vi® + M) 4 16643 =0 (3.5}

The coefficients o, and vy, should be different signs. Here the roots
of Equations {3.4) sare

(38.4)

3w 3 M
do=—g7 B=—30

The condition for these roots to be double [3] yilelds

81 1¥vitha
B o e A S———
A¥ = 3 o =+0
After appropriate computations we obtain

27 ih®

vy /1 27 1ivi®
oo =qly+7 5

1
)(cost~cos?>t)-—-i%<-3— +Z"gr)(3sint—sin 3

Purther, in accordance with {1.10), we compute v,y and Y¥,, , and then
from (1.6) we find (,® (z); substituting (,% ﬂ and €, () Into (1.7) we
find  F¥ (1), In accordande with (1.6), this allows us to find C!¥ () and
1ts derivative. Taking their values for t = 2n , we compute /;° from (2.13)

2yt [ 2 8¢yt )
Ay == e w%:;%—— {vg‘ dy [Vz\u -+ Agh1 g‘ﬁ,&;‘g (3e2m1 —-cn’z)_] +

45 11vi%hs® 9 A®
Tkt | O (Tt i) g et (der® o+ Btavet}

C;z
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It 1s obvious that by a proper choice of the parameters we can make
A °# O . Then we can construct two periodic solutlons of period 2n of
(3.3) which transform into the generating solutions wgen u =0 . These
gsolutlons are represented as the series in powers of u? (1.11).

Further, we have [ 3]

24,° 8C, acl“")’ﬁ 263 v )”’ _
Ay~ 5 B0 a8 ) —£ (3 0] Bu=-

aC, ™V /oA A
Ofose, b,
o0, /330 /2 v1 2

The expression within the braces under the radical 1s the same as that
within the braces for A,° above.

Since vy; and ¢; should be different signs, then for ‘A"’BV to be real
it 1s necessary to satisfy the condition {...} » O . o

Obviously, when vy,w< O we have the expression A,°> 0 , while when
Yyiv1 < 0 , the expression A,°<O0 .

Then, according to (1) and [5], we get the following results: when
v1v; < O the periodic solution corresponding to the plus sign before the
radical 1in ’Lh 1s stable; when y,v;> 0O the periodic solution correspond-
ing to the minus sign is stable. In accordance with (2.19) the condition
6§ < 0O 1s supplemented to these conditions.
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