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Conditions are obtained for the asymptotic stability of the periodic solu- 
tions of non-self-contained quasilinear systems with two degrees of freedom 
In the case of principal resonance with one resonant frequency for simple 
and double roots of the equation for the fundamental amplitudes. 

1. We consider the oscillatory system 

x" + kb = f(l) (t) + @” (t, x, x‘, Y, Y’r p) 

Y” + 0% = f@) (t) + p,F@) (t, x, x’s Y, Y’, p) WI 

Here j(l) and f(s) are continuous functions of period 277 , satisfying the 
conditions for the existence of periodic solutions of the generating system 
(cl = 0) with the same period; F(l) and F(s) are analytic functions with 
respect to the variables X, x-, 
functions of t with period 2~ . 

y, Y', ~1 , and are continuous periodic 

k is an integer, 
The quantity cc is a small parameter, 

ut is a nonlnteger. The generating solution of period 
2s depends on two arbitrary constants &o and PC 

q (t) = A, cos kt f BOW sin fit -I- jo(xf (t), Yo 0) = jot21 0) (4.2) 
Here f(1)o,f(2)o is a particular solution of period 2n of the system(l.l) 

when ~1 F 0 . 

The Initial conditions for system (1.1) are taken In the form Cl] 

Here 
analytic 

These 

x (0) = to(l) (0) + -40 + Pl , y (0) = fJ2) (0) 4 *1 

5’ (0) = fo@) (0) + Bo + P2, y’ (0) = fo@) (0) + *a (1.3) 

Gl, ga are functions of p vanishing for W = 0 ; 
functions of A*+ e1 , PO+ Ba and v 

*I and f2 are 
also vanishing for p - 0 . 

functions may be represented by the series 

The particular solution of system (1.1) with initial conditions (1.3), 
turned into the generating solution (1.2) when p = 0 , can be written ascl] 
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Bo+Sa . 
zfz (1) = f,(l) (t) + (A0 + 81) cm kt + ---&- sm kt + (1.5) 

?l==I 

y(t) = f,(z)(t) + g p)(t) + %Jp p1 + a* pa+... 
1 

pn 
n=1 - 

Let us note that the derivatives wlth respect to A0 and F$ are complex 
derivatives taken with due regard to the dependencies of C,(l)(t) and C,P)(t) 
on $, and $s which In turn depend on A0 and PO . 

The functions C,(l)(t) and C,(a)(t) are determined by Formulas 111 

t 

c n (1) (t) = + s ~*(~)(~)sin~(~ - r)dz WV 
0 

t 

C,(2)(t)= YVI co8ot + % sin& + $ 
s 
F,12)(r)sin o(t - z)dr 

0 

Here 

I B*=&=JltSf&=~=O 

are the complete partial derivatives of the functions F(') with respect to IJ- 

For example, 

F$‘) (t) = (F(“))o, Flfi) (t) = (F$‘)o CI(‘) (t) + (F,,f$, C$‘) (t) + 

+ (F,(f))o Cl(2) (t) + (F/j)0 Cl(*)’ (t) + (F (‘)),, P 
etc. 

Here and what follows the subscript 0 slgnlfles that in the functions 
within the parentheses the x, x', should be replaced by x0, x0*, 
fi:,yo;& ~er~~~c(~~~~;pe~~ =zfF(t;;&3ek. In order that the solution 

it is necessary-d sufficient that the 
following four Po3ncard conditions*for perlodicity E21 be satisfied: 

From these perlodlclty conditions we 

I) the amplitudes A0 and BO as 

cp (2%) = 0, 

2) the quantlties g1 and 
Equations (1.8) have double roots, 

~3~ in 

00 

?W=l 

&$?Jb~ (r -it 2) (1.9) 
?a==1 

Here the first nonzero coefficients 
A(‘) a& B(“) are determined from 

quadratic equations, while therest are oet%mZned froFlinear systems of 
equations with nonzero determinants in the unknowns [l and 33. 

3) the coefficients 'ft. and Ya. from Equations Cl] 
hr 

can find: 

solutions of the amplitude equations 

cl(')* (2r) = 0 (1 J-3 

the form of series In u or u* when 

- 0 II, sin 2no + Yyzn (cos 2%~ - i)+ p F,,t2) (T) COB o (2n- r) dr =0 (LiO) 

0 



Thus, to each skmple root of the equations for the fundamental amplitudes 
there corresonds one periodic solution of (1.1) In the form of the series 
(1.5) In integer powers 
in (1.9) equal to zero); 

of w (all the coefficients with frau?tlonal indices 
to each double root there c rrespond 

solutions of (1.X) in the form of series in !J or J 
two periodic 

where 

(1.11) 
n---0 n=O 

Here and In what follows the superscript (r) onYAMand BNz will be 
omitted. Let us Investigate the stability of these periodic solutions, 

2. Let us write down the variational equations for Bystem (1.1) 

uO)" + j&p = p (pp,(l) + ~c&(1~* + p+(Q + j.yuW), 

Ufa)-+ + o+Ja) = p (F,(a)& + ~7ttpk + f;‘,(*4p) f ~~?)~(~),)~ 
f2.f) 

The subscript r aS.gn.tfiea that in the derivatives of the functions FP) 
in place of the 

~~l~'krn Formulas (1.11). 
x, x*, tc, @ we must substitute the solution of 

For an approximate cromputation of the characteristic exponents we shall 
use the method presented 3.n 123 (pp.203-213). 

Let us first note the coefficients F,fi), k’,-@), . . . (i=f, 2) In Equations 
(2.1) are analytic functions of u, r, x*, gt v t and the 
as solutions of system (l.l), are analytic functions of p 

latter*in turn, 

quently, F@,... 
Conse- 

are analytic fun&ions of w or & (see [ygd t]). For 
example, with due regard to (1.11) 

F,(‘) (t, SE, s’, y, y’, P) = ( F,@))o + (Fg xs/, + F$xt,, + @;y,,, + F$.y:,,,o pi/’ + 

+(F~~l+F~.rt’+F~y~+F~y~‘+...)o~+... (2.2) 

Similar expansions hold also for the remaining coefficients. 

Let us find the characteristic exponents of system (2.1) correspond- 
to the rescmmt roots dk of the fundamental equation. When u = 0 the 
values of the characteristic exponents are a,,- f tk . Since in the resort 
ease the quantities f tk may be rejected from the characteristic exponents, 
we seek the latter in the form 

(2.3) 
7%=2 

System (2.1) has the solution 

,fQ (t) ;5 eat a(*) (t) (24 



where (1(l) and V('b are periodic functions of period 2n . Consequantly,lf 
ln Equations (2.1) we were to substitute the variables (2.4), then the trans- 
formed system should admit periodic solution. This condition serves for the 
determination of the quantity c,,,,. 

We seek the u(l) and ~("1 In the form 

(2.5) 

Let us substitute 
the substitution (2.4 

2.2), (2.3) and (2.5) Into Equations (2.1) after ma in& 
into them. &y equatlrg, terms of like powers of 5 

for the determlnatlon of the functions v(" 
u , 

we obtain the sequentlally- 
solvable Inhomogeneous linear systems of%quatlons 

where 

~~0) = 0, Q!;; = 0, @,1”) = _ 2alvoW- +(F,(i) VOW + ~~)vW~ + py(i+p) + ppf)., 
0 0 

@j/i’ = 
2 

-f&l&, vo(i)’ 
t 

- 2x&;;’ + (F,%!,y + F~)v!;)’ + F,(%!jz) + “$y), + (Fgq + 
* t * 

+ ~34,;). + F(i) v) + F(i) yW) 
d% xy ‘I8 

o v(y) + (F!&& + F!&z!$ + F!&y!i’ + 

+ F (0 yvb) 
=u’ ‘!s 0 

vp + (F~~4qy + F gzy + F$yr;J + F$!y{/!y’)o v,(Z) + 

+ (F$$$) + F,!;!z;fi)’ + F$;y:;) + @y!;“), VO(~)' a T- fi* (2.7) 

In what follows we shall also need the values of @(" upto n=5,but 
because of their awkwardness we shall not compute them c&e. 

The solutions of (2.6) will be periodic if and only If the conditions 

2x 2x 

s 

U$j2 (t) sin k8 dt = 0, 
s 

U$$; (t) cos kt dt = 0 (2.8) 

are satisfied. 0 0 

The periodic solutions of period 2n of system (2.6) are 

v$ (t) = Mn,2cos kt + $- N,,,sin kt + w,$ (t) 

v;'i"a (t) = w$) (t) (2.9) 

Here Jf,i21 N, 2 
4 

are arbitrary constants, w',';2 (t), Wn/‘J (') (t) Is a partlcu- 
lar periodic solut on of (2.6) of period 2n . For n - 0.1 we have, for 
example, 2(lo(*)= w#=O. 

Let us write down the conditions (2.8) for n = 2 , taking (2.7) and (2.9) 
into consideration when n - 0. , Here we must make use of the expressions 
for the derivatives of ~(1) (t),@) (t) with respect to A0 and F. when 
t -2n, as computed on the'basls'of (1.6). 

Finally, the stated conditions take the form 

iXp 
-2nal +N0g8o=O, 

1 
2nal 

) 
= 0 (2.10) 

Here and subsequently when the argument t Is omitted from the functions 
C(l)(t) c(l) (t) and their derivatives with respect to A0 and B. , it is to 
be'under&ood that t - 2n . 

The system of equations (2.10) define the unknown constants M, and No. 
In order that this system have a nontrivial solution It Is necessary and 



sufficient that the determinant In the unkown vanish. By expanding this 
determinant we obtain a quadratic equation with respect to c1 

a1+ A" =O, A0= 
a (cl (0, Cl(‘)‘) 

a (A~, Bo) 
(2.11) 

which Is a special case of Equation (13.6) &I [2] (p.210). 

For sufficiently small p the sign of the real part of c is determined 
by the sl n of the real part of the coefficient of the highest term in expan- 
sion (2.3 . Therefore, 7 In order that the solution of (1.1) be asymptotically 
stable It Is sufficient that the real parts of c1 be less than zero. From 
(2.11) we obtain the conditions for the real parts of c1 to be negative in 
the form 

a) 
acp ’ ~+$$<O, b) A'>0 (2.12) 

Conditlons(2.12) have alread 
(14 3 

been obtained in [2]. They are similar, 
respectively, to conditions and (9) of the paper [5] for a system with 
one degree of freedom. 

second condition In (2.12) is no longer satisfied since 
Let the equations for the fundamental amplitudes have EOzble root. The 

From (2.11) 
it follows that one of the values of cl= 0 . Let us find the Aext highest 
coefficient a,,, of the characteristic exponent, whose real part Is different 
from zero. We consider the most Interesting cases similar to that considered 
in C51. 

Here we shall make use of certain quantities obtained from the quantities 
Introduced in [3] by replacing in the latter the 
of Cl]. 

C, (t) of C 33 by the C,,(l)(t) 
We shall use the same notations for them except that we shall use 

a superscript o 

For example, 

a@ 
Alo = afjo 

acP - c2(lb _aB, cp, acl(l) - AZ” = aAo 

acP c2(,j - Cz(')' - aAo (2.13) 

1. Let AIo#O. There exist two periodic solutions of (l.l), which can 
be ex anded Into series In powere of ~3 . 
(2.107 

When el=O, from the Equations 
we have, for example, 

at,(l). 
MO=>%, 

at,(l). 
No=-- (2.14) 

For n = 3 , after cumbersome calculations the conditions (2.8) become 

where 

Jf$f' =A 
acl(l). a2cl(U 

'12 -TX&y -3p - (2.16) 

at,(I). a2cl(0 ac,(lb asc,(l)\ acP 
+ BI:.(x mo- m.&- w) -2a%n >i&- 

aq(l)~ a2c1W ac,(O azc,W 
WI:,’ = A,,, (x -a2F 7 tf~o ____ aAoaB0 + 1 

Let us recall that A,,sz, B,,,, (the coefficients of pn12 In expansions 
ave two values [i and 33 differing in sign and corresponding to two 

= 1, 2). 
Since the detrmlnant in the unknowns MI/,,NII, In system (2.15) equals 

zero, then for this system to be compatible It is necessary and sufficient 
that one of the Equations (2.15) be a consequence of the other. After some 
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~lpulatlons, from this condition we get the equation for determining Q% 

L, 10 E A,,o ;; i- 3$/I g 
ac,f’) acp \ 
- - 

0 c?Ao -i- dBo i %/n 

Since a,, 
assumed as 

should be less than zero, and the first condition in (2.12) is 
&atlsf'ied, 

satisfy the condition 
then for asymptotic stability It is sufficient to 
.L,So>O, slmllarly,to the condition (10) of 153. In 

the same way as there, it can be proved that L “#O 
considered and that the inequality Ls,~~>O 

In the case being 

periodic solutions. 
iz?'satisfled for one of the two 

2. Let AI09 0 , and let the roots of Equation IV@,%= -t N,,"u -t N200 zzz 0, 
which is similar to Equation (2.14) of 133, be simple, i.e. 
that 

a,# c, . Recall 

In tnls case there exist two periodic solutions of (l.l), which can be 
expanded into series In powers of u . 
L,,," = 0. 

The coefficient a,,,= 0, since 

When a,,, = 0, AI,~ = &,I = 0 for MI,* and *Nal, from (2.15) we get the same 
values as ?or & and He , respectively, In (2.14). The quantity Q is 
found from the existence conditions for periodic solutions of system 
for n = 4 , which after cumbersome computations are written as 

VW 

M,$$+ NI ‘$+Wli”+ a(A;, Bo, =0 
a (C,(l) Cl(l)) 

Ml ‘g + NI ‘g + WI(‘) + 
a (Ca(‘)’ cp’) 

a (Ao; Bo) = 0 (2.17) 

where ,ltl' and WI@) are obtained from W$+ and W& in (2.16) by replacing 
in the latter the quantities AI~_&~,,u,~ byA,,B,,a, , resPectivelY. 

Here we have made use of the expres)sion for the periodic solution of (2.6) 
when n = 2 , which has the form 

s,(l) (t)= 
a&') (t) acp (t) 

M1coskt+~sinkt+iMo~+ NO7 
0 ’ vl(2) (8) = f . . (2.18) 

and M, and N,, take the values (2.14). 

AS in the previous case the compatibility conditions for system (2.17) 
give the equation for the determination of a2 



La0 
By virtue of the same reasons as in C5], 
is similar to t, in 153. 

L,O# 0 sfnce Expression for 

On the basis of (2;12) (a), the condition for a2 to be negative, has a 
form L,O> 0 , which is sitilar to condition (13) in [5J. 

Finally, let a,= a2 , while the quantity p# 0 (similar to X in 
We can construct two perlodlc solutions of (l.l), which can beexpanded 

Into series in powers of & . 
therefore, sz= 0 . 

In this case the quantity Lz - 0 and, 

The coefficient a~,, is found from the perlodicity conditions (2.8) when 
n = 5 In the zmnner similar to the finding of aa from (2.8) when R = 4 . 
Here we use the value of $1 (t), 
out that 

as found from (2.6) when n - 3 , It turns 
, 

w,here MS. Nill are arbitr 
respectively, In (2.14 7. 

constants; 
NO, 

M*[,,Nll, have the same values as M,,, 

The stated 
tlon of Ma/,, 

eriodicity conditions yield two equations for the determina- 
&*. Taking into account that L,'= 0 , from the compatibility 

conditions for these equations we obtain the equation for determining ru/, 

In a manner similar to that in C!j] we can show that l&'#O, and, con- 
sequently, ckt,#o. The condition for ari. 
tion for asymptotic stability, 
of the two periodic solutions. 

Lvf,“>O, 
to be negative yields the condi- 

which is always satisfied for one 

Thus, for the resonance root we obtain results similar to the results for 
systems with one degree of freedom. The conditions for asymptotic stability, 
corresponding to the resonance root of the fundamental equation, coincide 
with the conditiona for asymptotic stability of the periodic solutions of a 
non-self-contained system with one deuree of freedom 153. All that need to 
be done Is to substitute the C,(t) I.5 the latter with the Cacl)(t) from 111. 

Finally, Let us write the stablllty conditions 
resonance root of the fundamental equation 

s (F,.(“))o dt < 0 
I 

0 

This condition 2s obtained by the same method, 
exponent is determined by Formula 123 

'a=fio+ $j an,#nfi 
n?rgl 

corresponding to the non- 

(2.19) 

however, the characteristic 

3. Let us consider some examples. 
from [l] 

(1). We take the system of equations 

2" + x = - 4 cos 2t + p p/8 y* - (1 - dq x.1 

y” + l/4 y = 5 cos zt + p p/s (1 -x2) I’ - ‘fs y’j W) 

The generating solution of (3.1) has the form 

se @) = A,cos t -!-Be sin t - 'I* co.9 2t, yo (t) = ---cl’* cos 2t 

The equations for the fundamental amplitudes 

A@ 13 + Y, (A$ + BOB)1 = 0, l&J (3 -t- '/* (.d*~ + &$)I = 0 

have the solution A~= &,= 0 . The periodic solutlon of ( 
in Cl] is stable since the first stability condition (2.12 

.l) constructed 
is not satisfied. 

2). We consider a system of equations of the form 

5”+~=ILIhttsint+a(1--,2),-+Py’] 

Y” -I- ‘14 y = p [- “/I ho sin L -+ r (l - 32%) x’ + S3j.j (3.2) 
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The generating solution depends on two arbitrary 

x0 (t) = A, cos t f B, sin 1, Yo M 
The equations for the f~damenta~ amplitudes 

constants, 

= 0 

*J&o -f- (6~ + 9rf-4 9 f 1 - ‘ip fAoa f Boz) ] -t ‘/,A0 (9fi + 1%) = 0 

0-5~ -i- WB, Ii - '/a (Au2 -t o&j -I- "/,B, (9B i- 126) = 0 

have the solutions Bcl: 0 , 
t&on 

Ac- A , where A Is the root of the cubic equa- 

(6u + 9y)M i 4 f6a -t- 9y + V7f), i *91&A -b 3h, =_ 0 
Here 

A0 = -9/xb @a -I- 9yW -I (6~ -t- 9y)A - (6a -t- Qy -k s/p6 $ f2/;6j2 

Let us assume that the parameters ho, a, 8, y, 6 are such that A'# 0 . 
Then we can construct a periodic solution of (3.2 in the form of series in 
integer powers of v . !J!he stability conditions 2.12) for this solution I 

7 
ive that he, a, &y, 6 
2.19) gives 6 < 0 . 

should be such that 60 + s > 0 and no> 0 . Condition 

31. We consider a more interesting example 

X” -+- T z p (vr em t -I- ii1 sin t -!- clz i ylzs i- d,y i g&j 

y” C lJ,g = p (va cos t -I- h, sin t -I- caz + ya8 -I- d& d- g& C 6~‘) (3.31 

This equation reminds us of the Duffing equation (21 in a quasi-linear 
formulation. The generating solution has the form 

x0 @) = A, cos t -i- B, sin t, Yo @) = 6 
The equations for the f~d~enta~ amplitudes are 

Cl@’ (%) FEE Jc Ih, -I- c&J i s/&s* &2 + Bea)] ‘= 0 

cl(l)* (Zn) SE 31- [Yt I- c&J + Y&A* @&c f B$)] Czz 0 
(3.4) 

The condition A'r 0 for the multiplicity of the root leads to the fol- 
lowing relation between the caefficlents of the equations: 

81rl(~la + hP) -f- 16 cl3 = 0 (3.5) 

The coefficients o1 and yI should be different signs. Here the roats 
of Equations (3.4) are 

The condition for these roots to be double 137 yields 

After appropriate computations we obtain 

27 TlhP cp (t) = $ (f -k mg yg- 1 AI 2 
fcost-cos3tf-~6 i 3 

27 
+x7 W@ 1 (3 sin 1- sin 38) 

Further, in accordance with (1.10), we corn ute yI1 and YzI , and then 
from (1.6) we find cl(sJ (t); substituting ,$] and C$@ ‘ft, into (1.7) we 
find F,(l (t). In gccordrtnce with (1.6), this a ows us o ind Csfl’ (tj and 
its derivat%ve . Taking their values for t - 2n , we compute r_Io from (2.13) 
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It is obvious that by a proper choice of the parameters we can make 
Alo# 0 . Then we can construct two periodic solutions of period 2n of 
(3.3) which transform Into the generating solutions w$en p = 0 . These 
Solutions are represented as the series in powers of u (1.11). 

Further, we have [ 31 

The expression within the braces under the radical Is the same as that 
within the braces for A~' above. 

Since Y1 and c1 should be different signs, then for A,,,,U,,z to be real 
it Is necessary to satisfy the condition I...) > 0 . 

Obviously, when Ylvlc 0 we have the expression 
the expression A,'< 0 . 

A,O> 0 , while when 
YlVl < 0 , 

Then, according to (1) and [5], we get the following results: when 
Y1vl< 0 the periodic solution corresponding to the plus sign before the 
radical in A,,, Is stable; when Y1vl> 0 the periodic solution co-respond- 
ing to the minus sign Is stable. In accordance with (2.19) the condition 
b < 0 Is supplemented to these conditions. 
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